
SQL - Structured Query Language
It was designed by IBM. It is:

– the standard relational language

– declarative (i.e. you just describe the desired result)

– not just a query language,

• but also for data definition and manipulation

It has many dialects - but now has standards:

– SQL89 (SQL1) - first attempt at a general standard

– SQL92 (SQL2) – the one most DBMS say they implement

• but Oracle (e.g.) has slight differences, notably in domain names

– SQL99 (SQL3) - extension to a full object oriented programming languageQ (Q) j p g g g g

Each DBMS conforms to a subset of the standards, and can introduce additional
features

361 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

features

Oracle SQL+ : The Main Commands

1. Data Definition Commands Lecture 17

Create Commands - data definition commands which create a database objectj
– e.g. create table - creates a new table

Alter Commands - data definition commands which allow database objects toAlter Commands data definition commands which allow database objects to
be edited

Drop Commands data definition commands which delete database objectsDrop Commands - data definition commands which delete database objects

2. Data Manipulation Commands Lecture 17

Insert - adds a new record to a table

Delete - removes records from a tableDelete - removes records from a table

Update - changes the values in records in a table

Truncate remove all rows from a table (faster than Delete *)

362 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Truncate - remove all rows from a table (faster than Delete *)

3 Q C d L t 15 d 163. Query Commands Lectures 15 and 16

Select - retrieves data from the database

4. Transaction Commands a later topic

Commit – ends current transaction, making all changes permanent

Rollback - undo all work in this transaction

Savepoint - create a point within a transaction to which you can roll back

5. Security Commands a later topic

Grant give a user or role access to a table or viewGrant - give a user or role access to a table or view

Revoke - remove granted access

363 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Overview of Syntax

SQL commands are not case sensitive, but a recommended approach is to have
– SQL words in uppercase

– Table names starting with a capital letter (like a java class)

– Column names starting with lowercase (like a java variable)

– but note your data will be case sensitive
• e.g. if you want to test a gender column for males and you ask

WHERE gender = ‘m’WHERE gender = m
then you’d better have lower case letters in your database or put

OR gender = ‘M’
Syntax:

– All SQL Commands are terminated by a semi-colon
(except in AquaData which uses the GO command)(p q)

– Strings are in single quotes

Lots of examples in the text file CreateAllTables sql

364 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Lots of examples in the text file CreateAllTables.sql

Querying In SQL

The basic form of query is :

SELECT List of expressions These are usually just column names thenSELECT List of expressions These are usually just column names, then
this is equivalent to projection

FROM List of tables This forms a Cartesian ProductFROM List of tables This forms a Cartesian Product

WHERE condition This makes a selection

e.g. SELECT dateofBirth, house, street
FROM Employee, Department

WHERE city = ‘Glasgow’ AND dept = deptIDWHERE city = ‘Glasgow’ AND dept = deptID
AND deptname = ‘Admin’;

The order of interpretation is:
– (FROM) I want to look at all combinations of records in these tables
– (WHERE) Filter out some of them using the condition – like Java if

365 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

() g f
– (SELECT) Then show me the data I have asked for

More on Querying

The WHERE clause can be dropped if there is no selection.

Use AND OR brackets etc for complex conditionsUse AND, OR, brackets etc for complex conditions

We can retrieve all the columns by use of *

SELECT * FROM Employee

WHERE city = ‘Glasgow’

AND gender = ‘F’;g ;

To return everything from a table, you would do, e.g.:

SELECT * FROM Employee;

366 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Duplicates in Retrievals

In general, a query returns the result including duplicated records
– i.e. it isn’t really a relation – this must be a set of records

i d hi i (h i ll) f d– instead this is (mathematically) a bag of records
– which is vital if you want to return everything

To eliminate duplicates include the word DISTINCT, e.g.

SELECT gender FROM Employeeg p y

returns many rows containing ‘M’ or ‘F’

SELECT DISTINCT gender FROM EmployeeSELECT DISTINCT gender FROM Employee

returns at most the two rows : ‘M’ and ‘F’

367 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Using Explicit Sets

We can write explicit sets instead of sub-queries
SELECT name FROM Employee

WHERE d t IN (1 2 3)WHERE dept IN (1,2,3);

Nulls in Queries

We can do:

SELECT name FROM EmployeeSELECT name FROM Employee
WHERE supervisor IS NULL;

i e Give the names of employees without supervisors or alternatively:i.e. Give the names of employees without supervisors, or alternatively:

WHERE supervisor IS NOT NULL;

368 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

See slides 373-376 for anomalies in queries involving nulls

Wildcard Characters and Pattern Matching

SELECT ni# FROM Employee
WHERE (lName LIKE 'A%') AND (fName LIKE '_on')

picks the employees whose last names begin with A and whose first names
have three letters, the last two of which are "on" - e.g. "Ron" and "Don".
i e "%" is a wildcard character which matches any number of charactersi.e. % is a wildcard character which matches any number of characters,

while "_" is a wildcard character which matches a single character
– NB Other DBMS may use different wildcard characters

W li it th l f l t li ithi ifi

Using Range Tests

We can limit the values of a column to lie within a specific range:
SELECT lName FROM Employee

WHERE dept BETWEEN 5 AND 7 //inclusive
– which picks the employees whose work for departments 5, 6 and 7

NOT can be used with any of these - e.g. NOT IN, NOT BETWEEN,

369 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

NOT can be used with any of these e.g. NOT IN, NOT BETWEEN,
NOT LIKE, etc.

Functions in Oracle SQL

conversion functions - e.g. to_char (convert anything to a textual
representation)

numeric functions - abs, ceil, cos, cosh, exp, floor, ln, log, mod,
power, round, sign, sin, sinh, sqrt, tan, tanh, trunc

character functions - e.g. substr, length, lower, lpad

date functions - to extract week, month, quarter or year, day, time…

aggregate functions - count, sum, avg, max, min, glb, lub, stddev, gg g , , g, , , g , , ,
variance

other functions - e g user (return current user)other functions e.g. user (return current user)

370 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Examples of Using Oracle Functions

Here are some that may be useful.

Compare text ignoring case:Compare text ignoring case:

SELECT * FROM Employee
WHERE UPPER(city) = ‘GLASGOW’;

– This converts the data to upper case before comparing it, so (provided that
h li l l i l l l i) h i ithe literal value is also completely in upper case) the comparison is not

case sensitive

Th f ti LOWER b d i il l– The function LOWER can be used similarly

Rounding calculation results

SELECT ROUND(AVG(balance),1)
– second parameter gives number of decimal places

371 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

– use 0 to get an integer

Formatting Output

It is often sensible to rename columns to give better headings, e.g.

SELECT bDate AS birthdateSELECT bDate AS birthdate
FROM Employee;

Y th SUBSTR f ti t t t fi ldYou can use the SUBSTR function to truncate a field

SELECT SUBSTR(fName,1,1) AS initial, lName as ‘last name’
FROM E l NB iFROM Employee; NB renaming

Alternatively you can use the SQL*Plus Format command:

COLUMN fName FORMAT A1 (char length = 1)

SELECT fN lN FROM E lSELECT fName, lName FROM Employee;

For landscape output use the SQL*Plus command

372 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

SET LINESIZE 120

The Semantics of NULL Comparisons

Remember tuples in SQL relations can have NULL as a value for one or
more components

l th i bl h ’t b d l d PRIMARY KEY NON– as long as the variable hasn’t been declared PRIMARY KEY or NON
NULL

Th i d d TThe meaning depends on context. Two common cases:
– Missing value: We don’t know all the values in the column:

• e.g., we don’t know always know the address of each employeeg y p y
– Inapplicable: Not all tuples have a value for this column

• e.g., the value of attribute spouse for an unmarried person.

When comparing NULLs to values we will have to use a three-valued
logic: TRUE, FALSE, UNKNOWN

Wh l i d i h h h l i– When any value is compared with NULL, the truth value is UNKNOWN
– But a query only produces a tuple in the answer if its truth value for the

WHERE-clause evaluates to TRUE (not FALSE or UNKNOWN).

373 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

Examples of Using Nulls

Assuming that the Employee table allows null values for all fields except
the employee number and the first and last name, then

– SELECT fname, lname FROM Employee WHERE age > 0
• will only return the names of employees whose ages are not NULLs

– SELECT dept FROM Employee
WHERE fname = ‘John’ AND age > 30

• will also omit any employee whose age we don’t know

– SELECT dept FROM Employee
WHERE fname = ‘John’ OR age > 30

• will include all Johns Truth Tables
AND TRUE FALSE UNK
TRUE TRUE FALSE UNK
FALSE FALSE FALSE FALSE

OR TRUE FALSE UNK
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNK

374 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

FALSE FALSE FALSE FALSE
UNK UNK FALSE UNK

FALSE TRUE FALSE UNK
UNK TRUE UNK UNK

Three-Valued Logic

To understand how AND, OR, and NOT work in 3-valued logic, think of:
TRUE = 1, FALSE = 0, and UNKNOWN = ½

and AND = MIN; OR = MAX; NOT(x) = 1-x

Example:Example:
TRUE AND (FALSE OR NOT(UNKNOWN)) =

MIN(1, MAX(0, (1 - ½))) =
MIN(1, MAX(0, ½) = MIN(1, ½) = ½

Explanation:
– NOT(UNKNOWN) evaluates to UNKNOWN because we still don’t know

whether the value is TRUE or FALSE
– FALSE or UKNOWN is also unknown because it still may be TRUE orFALSE or UKNOWN is also unknown because it still may be TRUE or

FALSE
– TRUE and UNKNOWN is also unknown because we if don’t the second

atom is TRUE or FALSE and so we don’t know the result of ANDing

375 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

atom is TRUE or FALSE and so we don t know the result of ANDing
with TRUE

Anomalies of Three Valued Logic

2-valued Laws != 3-Valued Laws
– Some common laws, like the commutativity of AND (i.e. X AND Y = Y

AND X) hold in 3 valued logicAND X), hold in 3-valued logic
• so TRUE AND UNKNOWN = UNKNOWN AND TRUE

– But others do not; example: the “law of excluded middle”, p

p OR NOT p = TRUE

– For 3-valued logic, the result might be UKNOWN: g g
• if p = UNKNOWN, then left side = max(1/2,(1–1/2)) = 1/2 != 1

ExampleExample
– SELECT name FROM Person WHERE age<18 OR age >= 18

• will omit any people who age column is NULL
• because we are testing UNKNOWN OR UNKNOWN

Like bag algebra, there is no way known to make 3-valued logic conform

376 10/11/2009MSc/Dip IT – ISD L15 Simple SQL Queries (361-376)

to all the laws we expect for sets/2-valued logic, respectively

